近幾年,世界各國紛紛在新材料領域制定了相應的規劃(見表1),全面加強研究開發,并在市場、產業環境等不同層面出臺政策。美國于2009年、2011年和2015年三度發布《國家創新戰略》,其中清潔能源、生物技術、納米技術、空間技術、健康醫療等優先發展領域均涉及新材料;2012年制定的《先進制造業國家戰略計劃》,進一步加大對材料科技創新的扶持力度。歐盟為實現經濟復蘇、消除發展痼疾、應對全球挑戰,于2010年制定了《歐洲2020戰略》,提出三大戰略重點。德國政府發布了《創意、創新、繁榮:德國高技術2020戰略》,其中“工業4.0”是十大未來項目中最為引人注目的課題之一。2013年英國推出《英國工業2050》,重點支持建設新能源、智能系統和材料化學等創新中心。日本于2010年發布了《新增長戰略》和《信息技術發展計劃》。韓國于2009年公布了《綠色增長國家戰略及五年行動計劃》和《新增長動力規劃及發展戰略》。巴西、印度、俄羅斯等新興經濟體采取重點趕超戰略,在新能源材料、節能環保材料、納米材料、生物材料、醫療和健康材料、信息材料等領域制定專門規劃,力圖在未來國際競爭中搶占一席之地。

表1 世界各國有關新材料領域的發展計劃
在全球化趨勢日益加快的背景下,新材料產業呈現以下主要特點和趨勢。
一、高新技術發展促使材料不斷更新換代
高新技術的快速發展對關鍵基礎材料提出新的挑戰和需求,同時材料更新換代又促進了高技術成果向生產力的轉化。例如,微電子芯片集成度及信息處理速度大幅提高,成本不斷降低,硅材料發揮了重要作用。目前,300mm硅片可滿足14nm技術節點的集成電路要求,450mm硅片已產出樣片。全球硅材料技術和產量按直徑的演化見圖1。低溫共燒陶瓷技術(LTCC)的研發取得重要突破,大量無源電子元件整合于同一基板內已成為可能。伴隨著先進材料研究技術的不斷延展,也產生了諸多新興產業。如氮化鎵等化合物半導體材料的發展,催生了半導體照明技術;白光LED的光效已遠遠超過白熾燈和熒光燈,給照明工業帶來革命性的變化。太陽能電池轉換效率不斷提高,極大地推動了新能源產業發展。鎂合金與鈦合金等高性能結構材料的加工技術取得突破,成本不斷降低,研究與應用重點由航空、航天以及軍工擴展到高附加值民用領域。基于分子和基因等臨床診斷材料和器械的發展,使肝癌等重大疾病得以早日發現和治療;介入器械的研發催生了微創和介入治療技術,使心臟病及其他疾病的死亡率大幅下降。
二、綠色、低碳成為新材料發展的重要趨勢
以新能源為代表的新興產業崛起,引起電力、建筑、汽車、通訊等多個產業發生重大變革,拉動上游產業如風機制造、光伏組件、多晶硅等一系列制造業和資源加工業的發展,促進智能電網、電動汽車等輸送與終端產品的開發和生產。歐美等發達國家已經通過立法,促進節能建筑和光伏發電建筑的發展,目前歐洲80%的中空玻璃使用LOW–E玻璃,美國LOW–E中空玻璃普及率達82%[8];光伏裝機容量不斷提高,圖2為近年來全球光伏累計裝機容量。通過提高新型結構材料強韌性、提高溫度適應性、延長壽命以及材料的復合化設計可降低成本、提高質量,如T800碳纖維抗壓縮強度(CAI)達到350MPa,使用溫度達到400℃以上并在大型飛機和導彈的主結構件中得到大量應用。功能材料向微型化、多功能化、模塊集成化、智能化等方向發展以提升材料的性能;納米技術與先進制造技術的融合將產生體積更小、集成度更高、更加智能化、功能更優異的產品。綠色、低碳的新材料技術及產業化將成為未來發展的主要方向,在追求經濟目標的同時更加注重資源節約、環境保護、公共健康等社會目標。
三、跨國集團在新材料產業中仍占據主導地位
目前,世界著名企業集團憑借其技術研發、資金和人才等優勢不斷向新材料領域拓展,在高附加值新材料產品中占據主導地位。信越、SUMCO、Siltronic、SunEdison等企業占據國際半導體硅材料市場份額的80%以上。半絕緣砷化鎵市場90%以上被日本的日立電工、住友電工、三菱化學和德國FCM所占有。DowChemical公司、GE公司、Wacker公司和Rhone–Poulenc公司及日本一些公司基本控制了全球有機硅材料市場。DuPont、Daikin、Hoechst、3M、Ausimont、ATO和ICI等7家公司擁有全球90%的有機氟材料生產能力。美國科銳(Cree)公司的碳化硅襯底制備技術具有很強市場競爭力,飛利浦(Philips)控股的美國Lumileds公司的功率型白光LED國際領先,美、日、德等國企業擁有70%LED外延生長和芯片制備核心專利。小絲束碳纖維的制造基本被日本的東麗纖維公司、東邦公司、三菱公司和美國的Hexel公司所壟斷,而大絲束碳纖維市場則幾乎由美國的Forta?l公司、Zoltek公司、Aldila公司和德國的SGL公司4家所占據。美鋁、德鋁、法鋁等世界先進企業在高強高韌鋁合金材料的研制生產領域居世界主導地位。美國的Timet、RMI和AllegenTeledyne等三大鈦生產企業的總產量占美國鈦加工總量的90%,是世界航空級鈦材的主要供應商。

圖1 全球硅材料技術和產量按直徑的演化

圖2 2006—2014年全球光伏累計裝機容量
四、新材料研發模式變革成為關注的重點
進入21世紀以來,發達國家逐漸意識到依賴于試錯的傳統材料研究方法已跟不上工業快速發展的步伐,甚至可能成為制約技術進步的瓶頸。因此,亟需革新材料研發方法,加速材料從研發到應用的進程。例如,作為美國政府“先進制造伙伴計劃”(AMP)的重要組成部分,2011年啟動的“材料基因組計劃”(MGI),其新材料從發現到應用的速度至少提高一倍,成本至少降低一半,旨在發展以先進材料為基礎的高端制造業,并繼續保持其在核心科技領域的優勢,材料基因組要素見圖3。MGI的具體內容包括:①發展高通量計算工具和方法,減少耗時費力的實驗,加快材料設計;②發展和推廣高通量材料制備和檢測工具,更快地進行候選材料驗證和篩選;③發展和完善材料數據庫/信息學工具,有效管理材料從發現到應用全過程數據鏈;④培育開放、協作的新型合作模式。
在這場變革材料研發模式過程中,歐盟、日本等也啟動了類似的科學計劃。例如,歐盟以輕量、高溫、高溫超導、磁性及熱磁、熱電和相變記憶存儲等六類高性能材料需求為牽引,推出了“加速冶金學”(ACCMET)計劃。(作者:屠海令,張世榮,李騰飛)

圖3 材料基因組要素